CONSTRUCCIÓN DE MODELOS GEOMÉTRICOS A PARTIR DE LAS SOMBRAS DE LA TIERRA
(Tomado de Villalva (2014:31-33))
Eratóstenes (273-192 a.C), geógrafo que vivió en Alejandría, fue el encargado de determinar el tamaño de la Tierra; él supuso que la Tierra se hallaba muy alejada del sol, por lo que sus rayos llegaban formando un haz paralelo.
Para determinar la longitud de la circunferencia terrestre Eratóstenes utilizó la población de Alejandría y Siena; al mediodía del solsticio de verano (22 de junio) el Sol se encuentra vertical a Siena; en ese momento si se coloca un objeto en forma vertical sobre el piso de Siena; dicho objeto no produce sombra.
Eratóstenes determinó el ángulo bajo el cual incidían los rayos solares al mediodía del solsticio de verano en esa población, encontrando que formaban un ángulo de 7° 12´ respecto a la vertical del lugar, siendo la cincuentava parte de la circunferencia del círculo; así que midiendo este ángulo se pudo saber que la longitud del arco de la circunferencia SA que hay entre Siena y Alejandría era precisamente la cincuentava parte de la circunferencia terrestre; por lo tanto al multiplicar por 50 dicho valor encontró que la circunferencia terrestre tiene una longitud de 250.000 estadios.
Eratóstenes obtuvo una aproximación del radio terrestre con un reducido error gracias al ingenio, de unas sencillas observaciones y de matemática elemental.
(Tomado de Maldonado (2014,44))
Eratóstenes (276-194 a.C.), fue matemático, astrónomo y geógrafo. Aproximadamente en el año 255 a.C. fue nombrado Director de la Biblioteca de Alejandría, tiempo en el que trabajó con problemas matemáticos, como la duplicación del cubo y los números primos. Uno de sus principales contribuciones a la ciencia y a la astronomía fue su trabajo sobre la medición de la Tierra, que se menciona en el siguiente relato:
Estando en la Biblioteca de Alejandría, encontró un informe de las observaciones sobre Siena, ciudad situada a unos 800 kilómetros al Sur de Alejandría, en el que se decía que el solsticio de verano (21 de junio) al mediodía, los objetos (por ejemplo los obeliscos) no producían sombra y en el fondo de los pozos podía verse la luz del sol. Esto se debía a que esta ciudad estaba sobre la línea del trópico (en realidad, 33 grados al norte del Trópico de Cáncer).
Eratóstenes observó que, en Alejandría, el mismo día y a la misma hora nose producía este mismo hecho, asumiendo de manera correcta que el sol se encontraba a gran distancia y que sus rayos, al alcanzar la Tierra, lo hacían en forma prácticamente paralela; esto ratificaba su idea de que la superficie de la Tierra era curva, pues de haber sido plana, no se hubiese producido esa diferencia entre las dos ciudades. El siguiente paso fue medir en Alejandría el ángulo que formaban los rayos del sol con la vertical que por construcción es igual al ángulo cuyo vértice está en el centro de la Tierra.
Este ángulo resultó ser de 7º 12´ que unido al hecho conocido de que la distancia entre las dos ciudades era de 5.000 estadios, dieron como conclusión que la circunferencia de la Tierra medía 250.000 estadios. Aunque no se tienen datos exactos, se sabe que el estadio equivale a unos 160 o 158 metros, por lo tanto, 250.000 estadios son aproximadamente 40.000 Km, lo que equivale a un radio entre 6.366 Km. y 6.286 Km. muy similar a los 6.371 Km. que son los admitidos hoy en día.
Las únicas herramientas de Eratóstenes fueron palos, ojos, pies y cerebro, además del gusto por la experimentación. Con estos elementos dedujo la circunferencia de la Tierra con un error bastante pequeño, lo que contribuye un logro notable para el año en que sucedió este cálculo.
Como medir la Tierra por medio de formulas matemáticas
Medición de las dimensiones de la Tierra

Posteriormente, tomó la distancia estimada por las caravanas que comerciaban entre ambas ciudades, aunque bien pudo obtener el dato en la propia Biblioteca de Alejandría, fijándola en 5000 estadios, de donde dedujo que la circunferencia de la Tierra era de 250.000 estadios, resultado que posteriormente elevó hasta 252000 estadios, de modo que a cada grado correspondieran 700 estadios. También se afirma que Eratóstenes, para calcular la distancia entre las dos ciudades, se valió de un regimiento de soldados que diera pasos de tamaño uniforme y los contara.
Admitiendo que Eratóstenes usase el estadio ático-italiano de 184.8 m, que era el que solía utilizarse por los griegos de Alejandría en aquella época, el error cometido sería de 6.192 kilómetros (un 15 %). Sin embargo, hay quien defiende que empleó el estadio egipcio (300 codos de 52,4 cm), en cuyo caso la circunferencia polar calculada hubiera sido de 39614 km, frente a los 40008 km considerados en la actualidad, es decir, un error de menos del 1%.
Ahora bien, es imposible que Eratóstenes diera con la medida exacta de la circunferencia de la Tierra debido a errores en los supuestos que calculó. Tuvo que haber tenido un margen de error considerable y por lo tanto no pudo haber usado el estadio egipcio: 2
- Supuso que la Tierra es perfectamente esférica, lo que no es cierto. Un grado de latitud no representa exactamente la misma distancia en todas las latitudes, sino que varía ligeramente de 110,57 km en el Ecuador hasta 111,7 km en los Polos. Por eso no podemos suponer que 7º entre Alejandría y Siena representen la misma distancia que 7º en cualquier otro lugar a lo largo de todo el meridiano.
- Supuso que Siena y Alejandría se encontraban situadas sobre un mismo meridiano, lo cual no es así, ya que hay una diferencia de 3 grados de longitud entre ambas ciudades.
- La distancia real entre Alejandría y Siena (hoy Asuán) no es de 924 km (5000 estadios ático-italiano de 184,8 m por estadio), sino de 843 km (distancia aérea y entre los centros de las dos ciudades), lo que representa una diferencia de 81 km.
- Realmente Siena no está ubicada exactamente sobre el paralelo del trópico de cáncer (los puntos donde los rayos del sol caen verticalmente a la tierra en el solsticio de verano). Actualmente se encuentra situada a 72 km (desde el centro de la ciudad). Pero debido a que las variaciones del eje de la Tierra fluctúan entre 22,1 y 24,5º en un período de 41000 años, hace 2000 años se encontraba a 41 km.
- La medida de la sombra que se proyectó sobre la vara de Eratóstenes hace 2.200 años debió ser de 7,5º o 1/48 parte de una circunferencia y no 7,2º o 1/50 parte. Puesto que en aquella época no existía el cálculo trigonométrico, para calcular el ángulo de la sombra, Eratóstenes pudo haberse valido de un compás,3 para medir directamente dicho ángulo, lo que no permite una medida tan precisa.
.
Posidonio rehizo el cálculo de Eratóstenes 150 años más tarde y obtuvo una circunferencia sensiblemente menor. Este valor fue adoptado por Ptolomeo y fue en el que probablemente se basó Cristóbal Colón para justificar la viabilidad del viaje a las Indias por occidente. Con las mediciones de Eratóstenes, el viaje no se habría llegado a realizar, al menos en aquella época y con aquellos medios, aceptando solo las certezas científicas. Los doctores consultados en Salamanca, a petición real, se basaron en ellos para determinar que el objetivo principal -llegar a China y Japón- era imposible dada la distancia. Finalmente, la empresa fue aprobada por el rey por las ventajas estratégicas y comerciales que preveía el proyecto y sobre objetivos secundarios, como la condición de Colón de obtener prebendas y porcentajes sobre las tierras que descubriera en camino.
Medición de la tierra mediante la sombra
El matemático griego Eratóstenes, se dio cuenta de que en el día del solsticio de verano (21 de junio) al medio día, en la ciudad de Siena (hoy Asuán) la luz del sol no proyectaba ninguna sombra sobre el fondo de un pozo, pero en la ciudad de Alejandría, situada al norte de Siena, en el mismo día y a la misma hora sí se proyectaba una sombra sobre el fondo de un pozo.
El solsticio de verano es el día mas largo del año y es producido por la inclinación del eje de la tierra. En el solsticio de verano del hemisferio Norte el Sol alcanza el cenit al mediodía sobre el Trópico de Cáncer, es decir, que en los lugares situados allí, el 21 de junio los rayos del sol caen verticalmente sobre la tierra, y por supuesto como esta es redonda, en los demás lugares caen inclinadamente. La ciudad de Siena esta ubicada muy cerca de la línea del trópico de cáncer.
Hechas estas observaciones a Eratóstenes se le ocurrió una brillante idea. El día 21 de junio al medio día en Alejandría tomó un palo y midió el ángulo de la sombra que se proyectaba sobre este y anotó que era una cincuentava parte de un circulo (en aquellos tiempos no existían las nociones de grados). La 50ava parte de un circulo (360 grados) equivale a 7.2 grados.
Entonces como ese mismo día a esa misma hora los rayos del sol caían verticalmente sobre Siena proyectando sombras de 0 grados sobre una vertical, entonces entre Siena y Alejandría había una distancia de 7.2 grados o la 50ava parte de la circunferencia de la tierra. (Eratóstenes asumió que la tierra era perfectamente circular).
Eratóstenes ya sabia de las caravanas que comerciaban entre ambas ciudades, que había una distancia estimada de 5,000 estadios entre ellas. Por lo tanto, simplemente multiplicó por 50. Esto es 250,000 estadios. El estadio era la unidad griega de longitud, que variaba de una localidad a otra entre 157.5 metros a 184.8 metros. El estadio utlizado por Eratóstenes fue el ático-italiano de 184.8 metros. Esto es 46,200 kms.
En las primera gráfica la maqueta esta inclinada pero en dirección al sol, no se produce sombra. En la segunda se inclino la maqueta pero manteniendola recta y la sombra que se produce en ambas es igual. En la tercera y cuarta gráfica entonces se curva la maqueta dejando el primer palito en dirección al sol, y vemos como en el segundo palito la sombra es larga pero en el primero no hay.



No hay comentarios:
Publicar un comentario